کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4944763 1438016 2016 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Single image super-resolution reconstruction based on genetic algorithm and regularization prior model
ترجمه فارسی عنوان
بازسازی با وضوح فوق العاده تصویر بر اساس الگوریتم ژنتیک و مدل پیش تصفیه قبلی
کلمات کلیدی
تنها تصویر فوق العاده رزولوشن، الگوریتم ژنتیک، مدل پیش فرض منظم سازی، به معنای غیر محلی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Single image super-resolution (SR) reconstruction is an ill-posed inverse problem because the high-resolution (HR) image, obtained from the low-resolution (LR) image, is non-unique or unstable. In this paper, single image SR reconstruction is treated as an optimization problem, and a new single image SR method, based on a genetic algorithm and regularization prior model, is proposed. In the proposed method, the optimization problem is constructed with a regularization prior model which consists of the non-local means (NLMs) filter, total variation (TV) and adaptive sparse domain selection (ASDS) scheme for sparse representation. In order to avoid local optimization, we combine the genetic algorithm and the iterative shrinkage algorithm to deal with the regularization prior model. Compared with several other state-of-the-art algorithms, the proposed method demonstrates better performances in terms of both numerical analysis and visual effect.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 372, 1 December 2016, Pages 196-207
نویسندگان
, , , , , ,