کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4944842 1438012 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Copulas-based time series combined forecasters
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Copulas-based time series combined forecasters
چکیده انگلیسی
Time series combined forecasters have been superior to the respective single models in statistical terms. In this way, the linear combination functions, e.g. the simple average (SA) and the minimal variance (MV) approaches, have been the main alternatives for aggregation in the literature. In this work, it is presented a copulas-based method for combining biased single models. Copulas are multivariate functions that operate on marginal probability distributions and have the specific advantage of generalizing MV by flexibly modelling the forecasters residuals and then the dependence among them: a typical divide-and-conquer framework that can result in superior combined forecasters. The usefulness of the copulas-based combination method is highlighted by means of a comparison with SA and MV models, based on a number of simulated cases and a real-world time series.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 376, 10 January 2017, Pages 110-124
نویسندگان
, , , ,