کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944901 | 1438015 | 2016 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
DenPEHC: Density peak based efficient hierarchical clustering
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Existing hierarchical clustering algorithms involve a flat clustering component and an additional agglomerative or divisive procedure. This paper presents a density peak based hierarchical clustering method (DenPEHC), which directly generates clusters on each possible clustering layer, and introduces a grid granulation framework to enable DenPEHC to cluster large-scale and high-dimensional (LSHD) datasets. This study consists of three parts: (1) utilizing the distribution of the parameter γ, which is defined as the product of the local density Ï and the minimal distance to data points with higher density δ in “clustering by fast search and find of density peaks” (DPClust), and a linear fitting approach to select clustering centers with the clustering hierarchy decided by finding the “stairs” in the γ curve; (2) analyzing the leading tree (in which each node except the root is led by its parent to join the same cluster) as an intermediate result of DPClust, and constructing the clustering hierarchy efficiently based on the tree; and (3) designing a framework to enable DenPEHC to cluster LSHD datasets when a large number of attributes can be grouped by their semantics. The proposed method builds the clustering hierarchy by simply disconnecting the center points from their parents with a linear computational complexity O(m), where m is the number of clusters. Experiments on synthetic and real datasets show that the proposed method has promising efficiency, accuracy and robustness compared to state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 373, 10 December 2016, Pages 200-218
Journal: Information Sciences - Volume 373, 10 December 2016, Pages 200-218
نویسندگان
Ji Xu, Guoyin Wang, Weihui Deng,