کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4951295 | 1441207 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The maximum k-differential coloring problem
ترجمه فارسی عنوان
حداکثر مشکل رنگ آمیزی رنگ دیفرانسیلی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Given an n-vertex graph G and two positive integers d,kâN, the (d,kn)-differential coloring problem asks for a coloring of the vertices of G (if one exists) with distinct numbers from 1 to kn (treated as colors), such that the minimum difference between the two colors of any adjacent vertices is at least d. While it was known that the problem of determining whether a general graph is (2,n)-differential colorable is NP-complete, our main contribution is a complete characterization of bipartite, planar and outerplanar graphs that admit (2,n)-differential colorings. For practical reasons, we also consider color ranges larger than n, i.e., k>1. We show that it is NP-complete to determine whether a graph admits a (3,2n)-differential coloring. The same negative result holds for the (â2n/3â,2n)-differential coloring problem, even in the case where the input graph is planar.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Discrete Algorithms - Volume 45, July 2017, Pages 35-53
Journal: Journal of Discrete Algorithms - Volume 45, July 2017, Pages 35-53
نویسندگان
Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, Konstantinos Stavropoulos, Sankar Veeramoni,