کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4951549 | 1441479 | 2017 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parallelizing maximal clique and k-plex enumeration over graph data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we first propose a new approach for maximal clique and k-plex enumeration, which identifies dense subgraphs by binary graph partitioning. Given a connected graph G=(V,E), it has a space complexity of O(|E|) and a time complexity of O(|E|μ(G)), where μ(G) represents the number of different cliques (k-plexes) existing in G. It recursively divides a graph until each task is sufficiently small to be processed in parallel. We then develop parallel solutions and demonstrate how graph partitioning can enable effective load balancing. Finally, we evaluate the performance of the proposed approach on real and synthetic graph data and show that it performs considerably better than existing approaches in both centralized and parallel settings. In the parallel setting, it can achieve the speedups of up to 10x over existing approaches on large graphs. Our parallel algorithms are primarily implemented and evaluated on MapReduce, a popular shared-nothing parallel framework, but can easily generalize to other shared-nothing or shared-memory parallel frameworks. The work presented in this paper is an extension of our preliminary work on the approach of binary graph partitioning for maximal clique enumeration. In this work, we extend the proposed approach to handle maximal k-plex detection as well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Parallel and Distributed Computing - Volume 106, August 2017, Pages 79-91
Journal: Journal of Parallel and Distributed Computing - Volume 106, August 2017, Pages 79-91
نویسندگان
Zhuo Wang, Qun Chen, Boyi Hou, Bo Suo, Zhanhuai Li, Wei Pan, Zachary G. Ives,