کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4958582 | 1364823 | 2016 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Gradient schemes for the Signorini and the obstacle problems, and application to hybrid mimetic mixed methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Gradient schemes is a framework which enables the unified convergence analysis of many different methods-such as finite elements (conforming, non-conforming and mixed) and finite volumes methods-for 2nd order diffusion equations. We show in this work that the gradient schemes framework can be extended to variational inequalities involving mixed Dirichlet, Neumann and Signorini boundary conditions. This extension allows us to provide error estimates for numerical approximations of such models, recovering known convergence rates for some methods, and establishing new convergence rates for schemes not previously studied for variational inequalities. The general framework we develop also enables us to design a new numerical method for the obstacle and Signorini problems, based on hybrid mimetic mixed schemes. We provide numerical results that demonstrate the accuracy of these schemes, and confirm our theoretical rates of convergence.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 72, Issue 11, December 2016, Pages 2788-2807
Journal: Computers & Mathematics with Applications - Volume 72, Issue 11, December 2016, Pages 2788-2807
نویسندگان
Yahya Alnashri, Jérôme Droniou,