کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4958614 | 1364824 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn-Hilliard equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we develop and analyze a nodal discontinuous Galerkin method for the linearized fractional Cahn-Hilliard equation containing derivatives of fractional order in space. The Caputo derivative is chosen as the representation of spatial derivative. The linearized fractional Cahn-Hilliard problem has been expressed as a system of low order differential/integral equations. We adopt the nodal discontinuous Galerkin methods for the full spatial discretization using a high-order nodal basis set of orthonormal Lagrange-Legendre polynomials of arbitrary order in space on each element of computational domain. Moreover, we prove the stability and optimal order of convergence N+1 for the linearized fractional Cahn-Hilliard problem when polynomials of degree N are used. Numerical experiments are displayed to verify the theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 73, Issue 6, 15 March 2017, Pages 1197-1217
Journal: Computers & Mathematics with Applications - Volume 73, Issue 6, 15 March 2017, Pages 1197-1217
نویسندگان
Tarek Aboelenen, H.M. El-Hawary,