کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4958710 | 1364831 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multiscale direction-splitting algorithms for parabolic equations with highly heterogeneous coefficients
ترجمه فارسی عنوان
الگوریتم چند بعدی جهت تقسیم بندی برای معادلات پارابولی با ضرایب بسیار ناهمگن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
In this paper we discuss two methods for upscaling of highly heterogeneous data for parabolic problems in the context of a direction splitting time approximation. The first method is a direct application of the idea of Jenny et al. (2003) in the context of the direction splitting approach. The second method devises the approximation from the Schur complement corresponding to the interface unknowns of the coarse grid, by applying a proper L2 projection operator to it. The spatial discretization employed in this paper is based on a MAC finite volume stencil but the same approach can be implemented within a proper finite element discretization. A key feature of the present approach is that it can extend to 3D problems with very little computational overhead. The properties of the resulting approximations are demonstrated numerically on some benchmark coefficient data available in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 72, Issue 6, September 2016, Pages 1641-1654
Journal: Computers & Mathematics with Applications - Volume 72, Issue 6, September 2016, Pages 1641-1654
نویسندگان
Shriram Srinivasan, Raytcho Lazarov, Peter Minev,