کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4964475 | 1447807 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence of Stochastic Approximation Monte Carlo and modified Wang-Landau algorithms: Tests for the Ising model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigate the behavior of the deviation of the estimator for the density of states (DOS) with respect to the exact solution in the course of Wang-Landau and Stochastic Approximation Monte Carlo (SAMC) simulations of the two-dimensional Ising model. We find that the deviation saturates in the Wang-Landau case. This can be cured by adjusting the refinement scheme. To this end, the 1ât-modification of the Wang-Landau algorithm has been suggested. A similar choice of refinement scheme is employed in the SAMC algorithm. The convergence behavior of all three algorithms is examined. It turns out that the convergence of the SAMC algorithm is very sensitive to the onset of the refinement. Finally, the internal energy and specific heat of the Ising model are calculated from the SAMC DOS and compared to exact values.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 216, July 2017, Pages 1-7
Journal: Computer Physics Communications - Volume 216, July 2017, Pages 1-7
نویسندگان
Simon Schneider, Marco Mueller, Wolfhard Janke,