کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4970948 1450304 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of transmission non-uniformity of a wrinkled EUV pellicle for N5 patterning under various illuminations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سخت افزارها و معماری
پیش نمایش صفحه اول مقاله
Impact of transmission non-uniformity of a wrinkled EUV pellicle for N5 patterning under various illuminations
چکیده انگلیسی


- Image distortion caused by wrinkled EUV pellicle is calculated.
- Intensity distribution after passing pellicle is varied with illumination conditions.
- Impact of wrinkled pellicle in terms of CD non-uniformity is presented.
- Allowable limit of wrinkle of EUV pellicle is suggested for N5 patterning.

To solve the defect problem during the exposure process of EUV lithography (EUVL), an EUV pellicle is suggested as a solution. Even though use of an EUV pellicle is considered an essential solution for defect control during the exposure process, it is not ready for application in real commercial processes due to how difficult it is to manufacture. Due to tight requirements for an EUV pellicle, flawless fabrication is impossible and deformations such as a wrinkle would result in serious patterning problems. These deformations lead to critical dimension (CD) non-uniformity due to the non-uniform transmission distribution caused by a pellicle wrinkle. In this paper, we discuss the impact of transmission non-uniformity caused by a wrinkled pellicle. When we treat the effects of a wrinkled pellicle, we considered off-axis-illumination, which is a promising resolution enhancement technology. By shrinking the target pattern size down to 7 nm nodes (N7) or 5 nm nodes (N5), a flexible illumination system is required to enhance the resolution ability. With dipole illuminations, resolution is varied by partial coherence and by not only the beam size at the pellicle, but also by the incident angle distribution. For these reasons, a non-uniform intensity distribution caused by a wrinkled pellicle is modified with changes in off-axis illumination conditions, including spatial coherence and the aperture shape. For N5 patterning, the CD non-uniformity of 0.2 nm occurs at 1.7% transmission variation (2-pass). However, the intensity distribution is varied under various illumination conditions in spite of the same pellicle conditions. The intensity non-uniformity goes up with increasing spatial coherence. Even though feature conditions of the wrinkled pellicle are the same, the transmission non-uniformity is changed with illumination conditions. Thus, the allowable feature conditions of the wrinkled pellicle may be changed. For achieving good CD uniformity, the allowable limit of the pellicle wrinkle is carefully studied because the impact of the wrinkled pellicle varies with the illumination conditions.

186

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microelectronic Engineering - Volume 177, 5 June 2017, Pages 35-40
نویسندگان
, , , , ,