کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4977951 | 1452111 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Centralized and optimal motion planning for large-scale AGV systems: A generic approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A centralized multi-AGV motion planning method is proposed. In contrast to the prevalent planners with decentralized (decoupled) formulations, a centralized planner contains no priority assignment, decoupling, or other specification strategies, thus is free from being case-dependent and deadlock-involved. Although centralized motion planning is computationally expensive, it deserves investigations in schemes that are sensitive to solution quality but insensitive to computation time. Specifically, centralized multi-AGV motion planning is formulated as an optimal control problem in this work, wherein differential algebraic equations are used to describe the AGV dynamics, mechanical restrictions, and exterior constraints. Orthogonal collocation direct transcription method is adopted to discretize the original infinite-dimensional optimal control problem into a large-scale nonlinear programming (NLP) problem, which is solved using interior point method thereafter. Exhaustive simulations are conducted on 10-AGV formation reconfiguration tasks. Simulation results show the validation, unification, and real-time implementation potential of the introduced centralized planner. Particularly, the computation time on a PC reduces to several seconds with near-optimal initial guess in the NLP solving process, making receding horizon replanning possible via this centralized planner.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Engineering Software - Volume 106, April 2017, Pages 33-46
Journal: Advances in Engineering Software - Volume 106, April 2017, Pages 33-46
نویسندگان
Li Bai, Liu Hong, Xiao Duo, Yu Guizhen, Zhang Youmin,