کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4987856 1455291 2017 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prandtl model for concentration polarization and osmotic counter-effects in a 2-D membrane channel
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Prandtl model for concentration polarization and osmotic counter-effects in a 2-D membrane channel
چکیده انگلیسی
An accurate 2-D numerical model that accounts for concentration polarization and osmotic effects is developed for the cross-flow filtration in a membrane channel. Focused on the coupling between laminar hydrodynamics and mass transfer, the numerical approach solves the solute conservation equation together with the steady Navier-Stokes equations under the Prandtl approximation, which offers a simplified framework to enforce the non-linear coupling between filtration and concentration polarization at the membrane surface. The present approach is first validated thanks to the comparison with classical exact analytical solutions for hydrodynamics and/or mass transfer, as well as with approximated analytical solutions that attempted at coupling the various phenomena. The effects of the main parameters in cross-flow reverse osmosis (RO) or nanofiltration (NF) (feed concentration, axial flow rate, operating pressure and membrane permeability) on streamlines, velocity profile, longitudinal pressure drop, local permeate flux and solute concentration profile are predicted with the present numerical model, and discussed. With the use of data reported from NF and RO experiments, the Prandtl approximation model is shown to accurately correlate both average permeate flux and local solute concentration over a wide range of operating conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Desalination - Volume 404, 17 February 2017, Pages 341-359
نویسندگان
, , , ,