| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4991308 | 1457110 | 2017 | 41 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Modeling of supercritical-pressure turbulent combustion of hydrocarbon fuels using a modified flamelet-progress-variable approach
												
											ترجمه فارسی عنوان
													مدل سازی احتراق سوختگی هیدروکربنی با فشار فوق بحرانی با استفاده از رویکرد اصلاح شده فلمائت- پیشرفت-متغیر 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												احتراق غیر پیش مخلوط شعله اشباع، مایع عمومی، تزریق کواکسیال، تزریق چرخش
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی شیمی
													جریان سیال و فرایندهای انتقال 
												
											چکیده انگلیسی
												Non-premixed turbulent combustion at a supercritical pressure is an important physicochemical phenomenon in many propulsion and power-generation systems. In this paper, a modified flamelet-progress-variable model, in which a simple term is proposed to approximately account for the extra turbulent mixing related to large density difference between two fluid streams, has been developed and incorporated into a single-phase general fluid numerical scheme in RANS framework for solving supercritical-pressure turbulent combustion of hydrocarbon fuels. The model was validated and then applied for studying the coaxial injection and turbulent combustion of LOx/methane and the swirling injection and turbulent combustion of LOx/kerosene at various supercritical pressures. Results indicate that for the coaxial injection and combustion of LOx/methane at a mixture ratio of 3, flame length decreases as chamber pressure increases, dictated by the penetration capability of the injected LOx stream. For the swirling injection and combustion of LOx/kerosene at supercritical pressures, flame moves closer to the injector as chamber pressure increases. This phenomenon at a higher pressure is similar to that caused by an increased inlet-flow swirling number. It suggests that increasing chamber pressure may lead to a shorter combustor for the turbulent combustion of LOx and hydrocarbon fuels.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Thermal Engineering - Volume 119, 5 June 2017, Pages 472-480
											Journal: Applied Thermal Engineering - Volume 119, 5 June 2017, Pages 472-480
نویسندگان
												Dongxin Huang, Qiuxiao Wang, Hua Meng, 
											