کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4997727 1459915 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله
Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network
چکیده انگلیسی
Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R2) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioresource Technology - Volume 228, March 2017, Pages 106-115
نویسندگان
, , , , , , ,