کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4999782 1460634 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel iterative neural dynamic programming for data-based approximate optimal control design
ترجمه فارسی عنوان
برنامه ریزی پویای عصبی ریاضی برای طراحی مبتنی بر داده های مبتنی بر تقریب بهینه کنترل
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی
As a powerful method of solving the nonlinear optimal control problem, the iterative adaptive dynamic programming (IADP) is usually established on the known controlled system model and is particular for affine nonlinear systems. Since most nonlinear systems are complicated to establish accurate mathematical models, this paper provides a novel data-based approximate optimal control algorithm, named iterative neural dynamic programming (INDP) for affine and non-affine nonlinear systems by using system data rather than accurate system models. The INDP strategy is built within the framework of IADP, where the convergence guarantee of the iteration is provided. The INDP algorithm is implemented based on the model-based heuristic dynamic programming (HDP) structure, where model, action and critic neural networks are employed to approximate the system dynamics, the control law and the iterative cost function, respectively. During the back-propagation of action and critic networks, the approach of directly minimizing the iterative cost function is developed to eliminate the requirement of establishing system models. The neural network implementation of the INDP algorithm is presented in detail and the associated stability is also analyzed. Simulation studies are conducted on affine and non-affine nonlinear systems, and further on the manipulator system, where all results have demonstrated the effectiveness of the proposed data-based approximate optimal control method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 81, July 2017, Pages 240-252
نویسندگان
, , ,