کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
501805 | 863651 | 2011 | 11 صفحه PDF | دانلود رایگان |

The computational techniques needed to generate a two-body Generalized Sturmian basis are described. These basis are obtained as a solution of the Schrödinger equation, with two-point boundary conditions. This equation includes two central potentials: A general auxiliary potential and a short-range generating potential. The auxiliary potential is, in general, long-range and it determines the asymptotic behavior of all the basis elements. The short-range generating potential rules the dynamics of the inner region. The energy is considered a fixed parameter, while the eigenvalues are the generalized charges. Although the finite differences scheme leads to a generalized eigenvalue matrix system, it cannot be solved by standard computational linear algebra packages. Therefore, we developed computational routines to calculate the basis with high accuracy and low computational time. The precise charge eigenvalues with more than 12 significant figures along with the corresponding wave functions can be computed on a single processor within seconds.
Journal: Computer Physics Communications - Volume 182, Issue 5, May 2011, Pages 1145–1155