کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
502296 | 863700 | 2011 | 12 صفحه PDF | دانلود رایگان |

In this paper, we develop a novel multi-symplectic wavelet collocation method for solving multi-symplectic Hamiltonian system with periodic boundary conditions. Based on the autocorrelation function of Daubechies scaling functions, collocation method is conducted for the spatial discretization. The obtained semi-discrete system is proved to have semi-discrete multi-symplectic conservation laws and semi-discrete energy conservation laws. Then, appropriate symplectic scheme is applied for time integration, which leads to full-discrete multi-symplectic conservation laws. Numerical experiments for the nonlinear Schrödinger equation and Camassa–Holm equation show the high accuracy, effectiveness and good conservation properties of the proposed method.
Journal: Computer Physics Communications - Volume 182, Issue 3, March 2011, Pages 616–627