کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
502447 | 863706 | 2010 | 11 صفحه PDF | دانلود رایگان |

Particle-in-cell (PIC) simulation is widely used in many branches of physics and engineering. In this paper, we give an analysis of the particle-field decomposition method and the domain decomposition method in parallel particle-in-cell beam dynamics simulation. The parallel performance of the two decomposition methods was studied on the Cray XT4 and the IBM Blue Gene/P Computers. The domain decomposition method shows better scalability but is slower than the particle-field decomposition in most cases (up to a few thousand processors) for macroparticle dominant applications. The particle-field decomposition method also shows less memory usage than the domain decomposition method due to its use of perfect static load balance. For applications with a smaller ratio of macroparticles to grid points, the domain decomposition method exhibits better scalability and faster speed. Application of the particle-field decomposition scheme to high-resolution macroparticle-dominant parallel beam dynamics simulation for a future light source linear accelerator is presented as an example.
Journal: Computer Physics Communications - Volume 181, Issue 12, December 2010, Pages 2024–2034