کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
502514 863710 2009 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
ABINIT: First-principles approach to material and nanosystem properties
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
ABINIT: First-principles approach to material and nanosystem properties
چکیده انگلیسی

ABINIT [http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation.The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials.Program summaryProgram title: ABINITCatalogue identifier: AEEU_v1_0Distribution format: tar.gzJournal reference: Comput. Phys. Comm.Programming language: Fortran95, PERL scripts, Python scriptsComputer: All systems with a Fortran95 compilerOperating system: All systems with a Fortran95 compilerHas the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors.RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file.Classification: 7.3, 7.8External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6]Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and vibrational lifetimes, etc.Solution method: Software application based on Density-Functional Theory and Many-Body Perturbation Theory, pseudopotentials, with planewaves, Projector-Augmented Waves (PAW) or wavelets as basis functions.Running time: From less than one second for the simplest tests, to several weeks. The vast majority of the >600 provided tests run in less than 30 seconds.References:[1] http://inac.cea.fr/LSim/BigDFT.[2] http://etsf.eu/index.php?page=standardization.[3] http://www.tddft.org/programs/octopus/wiki/index.php/Libxc.[4] http://www.unidata.ucar.edu/software/netcdf.[5] http://en.wikipedia.org/wiki/MessagePassingInterface.[6] http://www.wannier.org.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 180, Issue 12, December 2009, Pages 2582–2615
نویسندگان
, , , , , , , , , , , , , , , , , , , ,