کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
502960 | 863733 | 2013 | 8 صفحه PDF | دانلود رایگان |

Different from previous molecular dynamics (MD) simulation with pair potentials and many-body potentials, an efficient and highly scalable algorithm for GPU-accelerated MD simulation of solid covalent crystals is described in detail in this paper using sophisticated many-body potentials, such as Tersoff potentials for silicon crystals. The algorithm has effectively taken advantage of the reordering and sorting of atoms and the hierarchical memory of a GPU. The final results indicate that, about 30.5% of the peak performance of a single GPU can be achieved with a speedup of about 650 over a contemporary CPU core, and more than 15 million atoms can be processed by a single GPU with a speed of around 2 ns/day. Furthermore, the proposed algorithm is scalable and transferable, which can be applied to other many-body interactions and related large-scale parallel computation.
Journal: Computer Physics Communications - Volume 184, Issue 5, May 2013, Pages 1364–1371