کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
503204 | 863749 | 2010 | 12 صفحه PDF | دانلود رایگان |

Variance based methods have assessed themselves as versatile and effective among the various available techniques for sensitivity analysis of model output. Practitioners can in principle describe the sensitivity pattern of a model Y=f(X1,X2,…,Xk)Y=f(X1,X2,…,Xk) with k uncertain input factors via a full decomposition of the variance V of Y into terms depending on the factors and their interactions. More often practitioners are satisfied with computing just k first order effects and k total effects, the latter describing synthetically interactions among input factors. In sensitivity analysis a key concern is the computational cost of the analysis, defined in terms of number of evaluations of f(X1,X2,…,Xk)f(X1,X2,…,Xk) needed to complete the analysis, as f(X1,X2,…,Xk)f(X1,X2,…,Xk) is often in the form of a numerical model which may take long processing time. While the computational cost is relatively cheap and weakly dependent on k for estimating first order effects, it remains expensive and strictly k-dependent for total effect indices. In the present note we compare existing and new practices for this index and offer recommendations on which to use.
Journal: Computer Physics Communications - Volume 181, Issue 2, February 2010, Pages 259–270