کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
503301 | 863759 | 2008 | 6 صفحه PDF | دانلود رایگان |

The Wang–Landau algorithm is a flat-histogram Monte Carlo method that performs random walks in the configuration space of a system to obtain a close estimation of the density of states iteratively. It has been applied successfully to many research fields. In this paper, we propose a parallel implementation of the Wang–Landau algorithm on computers of shared memory architectures by utilizing the OpenMP API for distributed computing. This implementation is applied to Ising model systems with promising speedups. We also examine the effects on the running speed when using different strategies in accessing the shared memory space during the updating procedure. The allowance of data race is recommended in consideration of the simulation efficiency. Such treatment does not affect the accuracy of the final density of states obtained.
Journal: Computer Physics Communications - Volume 179, Issue 5, 1 September 2008, Pages 339–344