کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
503310 863761 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New version of PLNoise: a package for exact numerical simulation of power-law noises
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
New version of PLNoise: a package for exact numerical simulation of power-law noises
چکیده انگلیسی

In a recent paper I have introduced a package for the exact simulation of power-law noises and other colored noises [E. Milotti, Comput. Phys. Comm. 175 (2006) 212]: in particular, the algorithm generates 1/fα1/fα noises with 0<α⩽20<α⩽2. Here I extend the algorithm to generate 1/fα1/fα noises with 2<α⩽42<α⩽4 (black noises). The method is exact in the sense that it produces a sampled process with a theoretically guaranteed range-limited power-law spectrum for any arbitrary sequence of sampling intervals, i.e. the sampling times may be unevenly spaced.Program summaryTitle of program: PLNoiseCatalogue identifier:ADXV_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v2_0.htmlLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandProgramming language used: ANSI CComputer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4Operating system: All operating systems capable of running an ANSI C compilerRAM:   The code of the test program is very compact (about 60 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run with average list length 2⋅1042⋅104, the RAM taken by the list is 200 KbytesExternal routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell: ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press., Cambridge, 1992, pp. 274–290]. Notice that ranlib requires a pair of routines from the linear algebra package LINPACK, and that the distribution of ranlib includes the C source of these routines, in case LINPACK is not installed on the target machine.No. of lines in distributed program, including test data, etc.:2975No. of bytes in distributed program, including test data, etc.:194 588Distribution format:tar.gzCatalogue identifier of previous version: ADXV_v1_0Journal reference of previous version: Comput. Phys. Comm. 175 (2006) 212Does the new version supersede the previous version?: YesNature of problem: Exact generation of different types of colored noise.Solution method: Random superposition of relaxation processes [E. Milotti, Phys. Rev. E 72 (2005) 056701], possibly followed by an integration step to produce noise with spectral index >2.Reasons for the new version:   Extension to 1/fα1/fα noises with spectral index 2<α⩽42<α⩽4: the new version generates both noises with spectral with spectral index 0<α⩽20<α⩽2 and with 2<α⩽42<α⩽4.Summary of revisions: Although the overall structure remains the same, one routine has been added and several changes have been made throughout the code to include the new integration step.Unusual features: The algorithm is theoretically guaranteed to be exact, and unlike all other existing generators it can generate samples with uneven spacing.Additional comments: The program requires an initialization step; for some parameter sets this may become rather heavy.Running time: Running time varies widely with different input parameters, however in a test run like the one in Section 3 in the long write-up, the generation routine took on average about 75 μs for each sample.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 177, Issue 4, 15 August 2007, Pages 391–398
نویسندگان
,