کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
503665 863796 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries
چکیده انگلیسی

Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al., (2007) [5]), with a regular (non-field-aligned) mesh.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 181, Issue 4, April 2010, Pages 715–719
نویسندگان
, , , , , ,