کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5077607 | 1374139 | 2006 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The maximum surplus before ruin in an Erlang(n) risk process and related problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the distribution of the maximum surplus before ruin in a Sparre Andersen risk process with the inter-claim times being Erlang(n) distributed. This distribution can be analyzed through the probability that the surplus process attains a given level from the initial surplus without first falling below zero. This probability, viewed as a function of the initial surplus and the given level, satisfies a homogeneous integro-differential equation with certain boundary conditions. Its solution can be expressed as a linear combination of n linearly independent particular solutions of the homogeneous integro-differential equation. Explicit results are obtained when the individual claim amounts are rationally distributed. When n=2, all the results can be expressed explicitly in terms of the non-ruin probability. We apply our results by looking at (i) the maximum severity of ruin and (ii) the distribution of the amount of dividends under a constant dividend barrier.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 38, Issue 3, 15 June 2006, Pages 529-539
Journal: Insurance: Mathematics and Economics - Volume 38, Issue 3, 15 June 2006, Pages 529-539
نویسندگان
Shuanming Li, David C.M. Dickson,