| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5095901 | 1376490 | 2015 | 16 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Risk-parameter estimation in volatility models
												
											ترجمه فارسی عنوان
													برآورد پارامتر خطر در مدل های نوسان پذیری 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آمار و احتمال
												
											چکیده انگلیسی
												This paper introduces the concept of risk parameter in conditional volatility models of the form ϵt=Ït(θ0)ηt and develops statistical procedures to estimate this parameter. For a given risk measure r, the risk parameter is expressed as a function of the volatility coefficients θ0 and the risk, r(ηt), of the innovation process. A two-step method is proposed to successively estimate these quantities. An alternative one-step approach, relying on a reparameterization of the model and the use of a non Gaussian QML, is proposed. Asymptotic results are established for smooth risk measures, as well as for the Value-at-Risk (VaR). Asymptotic comparisons of the two approaches for VaR estimation suggest a superiority of the one-step method when the innovations are heavy-tailed. For standard GARCH models, the comparison only depends on characteristics of the innovations distribution, not on the volatility parameters. Monte-Carlo experiments and an empirical study illustrate the superiority of the one-step approach for financial series.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 184, Issue 1, January 2015, Pages 158-173
											Journal: Journal of Econometrics - Volume 184, Issue 1, January 2015, Pages 158-173
نویسندگان
												Christian Francq, Jean-Michel Zakoïan, 
											