کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5096040 1376499 2015 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The three-pass regression filter: A new approach to forecasting using many predictors
ترجمه فارسی عنوان
فیلتر رگرسیون سه مرحله ای: یک رویکرد جدید برای پیش بینی با استفاده از بسیاری از پیش بینی کننده ها
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
چکیده انگلیسی
We forecast a single time series using many predictor variables with a new estimator called the three-pass regression filter (3PRF). It is calculated in closed form and conveniently represented as a set of ordinary least squares regressions. 3PRF forecasts are consistent for the infeasible best forecast when both the time dimension and cross section dimension become large. This requires specifying only the number of relevant factors driving the forecast target, regardless of the total number of common factors driving the cross section of predictors. The 3PRF is a constrained least squares estimator and reduces to partial least squares as a special case. Simulation evidence confirms the 3PRF's forecasting performance relative to alternatives. We explore two empirical applications: Forecasting macroeconomic aggregates with a large panel of economic indices, and forecasting stock market returns with price-dividend ratios of stock portfolios.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 186, Issue 2, June 2015, Pages 294-316
نویسندگان
, ,