کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5097157 1376572 2007 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient high-dimensional importance sampling
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Efficient high-dimensional importance sampling
چکیده انگلیسی
The paper describes a simple, generic and yet highly accurate efficient importance sampling (EIS) Monte Carlo (MC) procedure for the evaluation of high-dimensional numerical integrals. EIS is based upon a sequence of auxiliary weighted regressions which actually are linear under appropriate conditions. It can be used to evaluate likelihood functions and byproducts thereof, such as ML estimators, for models which depend upon unobservable variables. A dynamic stochastic volatility model and a logit panel data model with unobserved heterogeneity (random effects) in both dimensions are used to provide illustrations of EIS high numerical accuracy, even under small number of MC draws. MC simulations are used to characterize the finite sample numerical and statistical properties of EIS-based ML estimators.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 141, Issue 2, December 2007, Pages 1385-1411
نویسندگان
, ,