کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5097165 | 1376573 | 2009 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a Bayesian approach to bandwidth selection for multivariate kernel regression. A Monte Carlo study shows that under the average squared error criterion, the Bayesian bandwidth selector is comparable to the cross-validation method and clearly outperforms the bootstrapping and rule-of-thumb bandwidth selectors. The Bayesian bandwidth selector is applied to a multivariate kernel regression model that is often used to estimate the state-price density of Arrow-Debreu securities with the S&P 500 index options data and the DAX index options data. The proposed Bayesian bandwidth selector represents a data-driven solution to the problem of choosing bandwidths for the multivariate kernel regression involved in the nonparametric estimation of the state-price density pioneered by Aït-Sahalia and Lo [Aït-Sahalia, Y., Lo, A.W., 1998. Nonparametric estimation of state-price densities implicit in financial asset prices. The Journal of Finance, 53, 499, 547.]
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 153, Issue 1, November 2009, Pages 21-32
Journal: Journal of Econometrics - Volume 153, Issue 1, November 2009, Pages 21-32
نویسندگان
Xibin Zhang, Robert D. Brooks, Maxwell L. King,