کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5103122 1480099 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Correlation and relaxation times for a stochastic process with a fat-tailed steady-state distribution
ترجمه فارسی عنوان
زمان همبستگی و آرام شدن برای یک فرآیند تصادفی با توزیع حالت پایدار با چربی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
We study a stochastic process defined by the interaction strength for the return to the mean and a stochastic term proportional to the magnitude of the variable. Its steady-state distribution is the Inverse Gamma distribution, whose power-law tail exponent is determined by the ratio of the interaction strength to stochasticity. Its time-dependence is characterized by a set of discrete times describing relaxation of respective cumulants to their steady-state values. We show that as the progressively lower cumulants diverge with the increase of stochasticity, so do their relaxation times. We analytically evaluate the correlation function and show that it is determined by the longest of these times, namely the inverse interaction strength, which is also the relaxation time of the mean. We also investigate relaxation of the entire distribution to the steady state and the distribution of relaxation times, which we argue to be Inverse Gaussian.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 474, 15 May 2017, Pages 301-311
نویسندگان
, ,