کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5129284 | 1378613 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust estimation and variable selection in censored partially linear additive models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider a new estimation in censored partially linear additive models in which the nonparametric components are approximated by polynomial spline. For identifying the significant variables in the linear part, a regularization procedure based on adaptive lasso is proposed for estimation and variable selection simultaneously. Under some regular conditions, the asymptotic normality and oracle property of the parametric components are established, and the convergence rates of the nonparametric components are obtained. Simulation studies and a real data analysis are presented to illustrate the behavior of the proposed estimators.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Korean Statistical Society - Volume 46, Issue 1, March 2017, Pages 88-103
Journal: Journal of the Korean Statistical Society - Volume 46, Issue 1, March 2017, Pages 88-103
نویسندگان
Huilan Liu, Hu Yang, Xiaochao Xia,