کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5130702 | 1490843 | 2017 | 7 صفحه PDF | دانلود رایگان |

- An easy and facile synthesis of monodisperse novel Pd/TNM@rGO nanocomposites.
- Rapid, Sensitive, and Reusable Detection of H2O2 by novel nanocomposites.
- The excellent electrochemical sensing properties of monodisperse Pd/TNM@rGO.
- Thanks to the ultrasmall sizes, monodispersity and high Pd % surface of novel materials.
Addressed herein, we report the synthesis and characterization of a tert-nonyl mercaptan (TNM) functionalized reduced graphene oxide (rGO) supported palladium (Pd) nanoparticles (NPs) (Pd/TNM@rGO) as electrochemical sensor. The highly monodisperse Pd/TNM@rGO nanocomposite was applied for electrochemical determination of hydrogen peroxide (H2O2) at a potential range of â0.6 to +0.8 V. The Pd/TNM@rGO sensor demonstrated very high activity, sensitivity, reusability and durability toward H2O2 sensing. The well dispersed Pd/TNM@rGO nanocomposite has been characterized by using several analytical techniques such as, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and electrochemical impedance spectroscopy (EIS). The catalytic performance of prepared biosensor was also characterized by using cyclic voltammetry (CV) and chronoamperometry (CA) methods. The proposed H2O2 biosensor showed a broad linear range up to 12 mM, and a very low detection limit of 0.0025 μM, with a quick response time of less than 10 s. Additionally, the biosensor exhibited great capability, reproducibility and durability for the examination of H2O2.
225
Journal: Analytica Chimica Acta - Volume 989, 9 October 2017, Pages 88-94