کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5131288 1490884 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Revisiting catechol derivatives as robust chromogenic hydrogen donors working in alkaline media for peroxidase mimetics
ترجمه فارسی عنوان
بازبینی مشتقات کاتچول به عنوان دونرهای قوی هیدروژن در محیط کشت قلیایی برای مؤلفه های پراکسیداز
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


- Gold nanoparticles exhibit activity towards peroxidation of pyrogallol and bromopyrogallol red.
- Catechol derivatives work as hydrogen donors in a peroxidase-like activity assays.
- Complexation of PG and BPR by borate enables their application in alkaline media.
- AuNPs-mediated peroxidation is governed by a mechanism of a heterogeneous catalysis.

Colloidal noble metal-based nanoparticles are able to catalyze oxidation of chromogenic substrates by H2O2, similarly to peroxidases, even in basic media. However, lack of robust chromogens, which work in high pH impedes their real applications. Herein we demonstrate the applicability of selected catechol derivatives: bromopyrogallol red (BPR) and pyrogallol (PG) as chromogenic substrates for peroxidase-like activity assays, which are capable of working over wide range of pH, covering also basic values. Hyperbranched polyglycidol-stabilized gold nanoparticles (HBPG@AuNPs) were used as model enzyme mimetics. Efficiency of several methods of improving stability of substrates in alkaline media by means of selective suppression of their autoxidation by molecular oxygen was evaluated. In a framework of presented studies the impact of borate anion, applied as complexing agent for PG and BPR, on their stability and reactivity towards oxidation mediated by catalytic AuNPs was investigated. The key role of high concentration of hydrogen peroxide in elimination of non-catalytic oxidation of PG and improvement of optical properties of BPR in alkaline media containing borate was underlined. Described methods of peroxidase-like activity characterization with the use of BPR and PG can become universal tools for characterization of nanozymes, which gain various applications, among others, they are used as catalytic labels in bioassays and biosensors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 948, 15 December 2016, Pages 80-89
نویسندگان
, , , ,