کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5132012 1378787 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Insight into the mechanism of galactokinase: Role of a critical glutamate residue and helix/coil transitions
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Insight into the mechanism of galactokinase: Role of a critical glutamate residue and helix/coil transitions
چکیده انگلیسی


- The catalytic mechanism of galactokinase is not fully understood.
- Alteration of the active site changes the dynamics of residues 174-179 and 231-240.
- Alteration of R105, E174 and R228 also affects the dynamics of these residues.
- A negative charge at residue 174 is essential for catalysis.
- Residues 174-179 and 231-240 are critical in activity, specificity and stability.

Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg-228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme's interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme's structure and function.

366

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics - Volume 1865, Issue 3, March 2017, Pages 321-328
نویسندگان
, , ,