کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5132347 1491520 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data-driven root cause diagnosis of faults in process industries
ترجمه فارسی عنوان
ریشه های داده ها باعث تشخیص خطاها در صنایع فرآیند می شود
کلمات کلیدی
ریشه علت تشخیص، تجزیه و تحلیل مولفه اصلی پویا، کمک هزینه بازسازی، تجزیه و تحلیل علیت گرنجر، انحراف زمان دینامیک،
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


- Propose a framework of root diagnosis of faults by combining process monitoring and causality analysis methods.
- Recall and compare different causality analysis methods for stationary faults.
- Propose a dynamic time warping based causality analysis for nonstaionary faults.

Data driven fault detection and diagnosis methods become more and more attractive in modern industries especially process industries. They can not only guarantee safe operation but also greatly improve product quality. For example, dynamic principal component analysis models and reconstruction based contribution are widely applicable in many occasions. However, there is one issue which does not receive enough attention, namely locating the root cause of a fault when it occurs. In this paper, a framework of root cause location is proposed to address this issue, including both stationary faults and nonstationary faults. A case study on Tennessee Eastman process is used to demonstrate the usage and effectiveness of these approaches. Results show the proposed framework is valid.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 159, 15 December 2016, Pages 1-11
نویسندگان
, , ,