کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5135420 | 1493444 | 2017 | 7 صفحه PDF | دانلود رایگان |

- The effect of pore size on performance of superficially porous chiral stationary phases.
- The reduced plate heights in the range 1.4-1.5 were observed.
- The effect of instrumental setup on separation performance bias is shown.
Our earlier studies on the preparation of chiral stationary phases (CSP) based on superficially porous (or core-shell) silica (SPS) particles for the separation of enantiomers in HPLC have provided proof to the advantages of such sorbents. In particular, higher enantioselectivity was observed with the columns packed with superficially porous CSP compared to the columns packed with fully-porous (FP) silica-based CSPs at comparable content of chiral selector (polysaccharide derivative) in CSP. Also, less dependence of plate height on mobile phase flow rate and higher plate numbers and resolution calculated per unit time (i.e. speed of separation) were observed with SPS-based CSPs. Thirty years of CSP development have demonstrated that wide-pore silica has to be used as a support for large molecular weight chiral selectors such as the ones based on polysaccharides. In this study the effect of pore size of the core-shell silica support and of other experimental factors on column performance is demonstrated. Reduced plate heights in the range 1.4-1.5 were obtained, as well as highly effective baseline separations of enantiomers were observed with analysis times of less than 15Â s.
Journal: Journal of Chromatography A - Volume 1482, 27 January 2017, Pages 32-38