کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5145425 1497349 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Photovoltaic system assessment for a school building
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Photovoltaic system assessment for a school building
چکیده انگلیسی
The installation of photovoltaic panels (PVs) on the roof of residential and commercial buildings is getting widespread as these areas stand normally idle and can be used for another purpose without losing an inhabited space. Considering the solar potential of Turkey, a significant amount of electricity generation is possible using current PV technology. For this reason, a two-story detached school building located in İzmir, Turkey was taken into consideration and monthly as well as annual coverage ratio of an on-grid PV system for its entire energy requirement (including heating, cooling and lighting) was investigated. The PVs were installed on the south face of the school building roof. A heat pump, with a typical coefficient of performance (COP) value of 2.5, was used for supplying required cooling and heating. The heating, cooling and lighting loads were determined on a monthly basis. The average monthly electrical energy generation of the mounted PVs was calculated using a written code in Energy Equation Solver (EES) software. As a result, the monthly as well as yearly electrical energy demand coverage ratio values for the school using the installed PVs were revealed. Since the school building has a large south faced roof, the installation of PVs is very suitable to meet the cumulative electrical energy need of the heat pump and the lighting load. For Case 1, 180 PVs, which supply the entire yearly demand (with a 110% coverage ratio), were taken into consideration, while for Case 2, 265 PVs, which cover 75% of the roof area, were evaluated. The results showed that between November and March, PV electrical energy generation is not sufficient to meet all energy need of the school for both cases. However, significant coverage ratio values were observed for the rest of the year. In a yearly basis, the PV generation exceeded the building demand by 62% for the Case 2. This conclusion points out that the school can meet its yearly electricity need with the considered PV system and can even have an additional financial profit by selling its surplus PV electricity to the grid. Economic and environmental payback time values as well as simple payback time value were also computed for both investigated cases. The results pointed out a simple payback time of 7.9 years for Case 1 and 7.6 years for Case 2. Energy payback time was determined as 5 years for both systems. The greenhouse gas payback time of 2.7 years and 5.9 years was encountered for coal based and natural gas based calculations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 42, Issue 28, 13 July 2017, Pages 17856-17868
نویسندگان
, ,