کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5163588 1379911 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
20 My of nitrogen fixation during deposition of mid-Cretaceous black shales on the Demerara Rise, equatorial Atlantic Ocean
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
20 My of nitrogen fixation during deposition of mid-Cretaceous black shales on the Demerara Rise, equatorial Atlantic Ocean
چکیده انگلیسی
Thick sequences of dark colored, organic carbon rich, finely laminated Santonian-Cenomanian claystones and homogeneous Albian siltstones were recovered from Ocean Drilling Program Sites 1257, 1258 and 1260 on the Demerara Rise in the western equatorial Atlantic Ocean. Total organic carbon (TOC) concentrations vary from 2 to over 20 wt% in the sequences of “black shales” that were deposited over a period of ∼20 million years. Similarly long periods of elevated marine productivity implied by the high TOC concentrations are uncommon in the geological record and must have required unusual paleoceanographic conditions. The importance of nitrogen fixing bacteria to sustaining the amplified export production of organic matter is indicated by δ15N values that remain between −4‰ and 0‰, a range that is notably less positive than the average of +5‰ for modern ocean sediments. Although containing mostly marine organic matter, the black shales have TOC/TN molar ratios between 20 and 40 that mimic those of land plant organic matter. The anomalously large TOC/TN ratios suggest selective organic matter degradation, probably associated with low oxygen conditions in the water column, that favored preservation of nitrogen poor forms of organic matter relative to nitrogen rich components. Deposition of black shales on the Demerara Rise was likely a consequence of the mid-Cretaceous warm and wet greenhouse climate that strengthened thermohaline stratification of this part of the Atlantic Ocean, which in turn encouraged bacterial nitrogen fixation, enhanced primary production, magnified organic matter export, and ultimately established anoxic conditions at the seafloor that improved preservation of organic matter for much of the 20 My period represented by these thick sequences.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Organic Geochemistry - Volume 40, Issue 2, February 2009, Pages 158-166
نویسندگان
, , ,