کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5184337 1381045 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fe3O4@poly(2-hydroxyethyl methacrylate)-graft-poly(ɛ-caprolactone) magnetic nanoparticles with branched brush polymeric shell
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Fe3O4@poly(2-hydroxyethyl methacrylate)-graft-poly(ɛ-caprolactone) magnetic nanoparticles with branched brush polymeric shell
چکیده انگلیسی

Well-defined monodisperse Fe3O4@poly (2-hydroxyethyl methacrylate)-graft- poly(ε-caprolactone) (Fe3O4@PHEMA-g-PCL) magnetic nanoparticles with novel topological structure, i.e., with branched brush polymeric shell, were successfully prepared by the combination of atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP). Oleic acid stabilized monodisperse Fe3O4 nanoparticles were prepared by a convenient organic phase process and underwent a ligand exchange process with 2-bromo-2-methylpropionic acid (Br-MPA) to generate macroinitiator (Fe3O4@Br-MPA) for ATRP of 2-hydroxyethyl methacrylate (HEMA) to produce Fe3O4@poly(2-hydroxyethyl methacrylate) (Fe3O4@PHEMA). PCL segments were grafted from the side of PHEMA by the ROP of ε-caprolactone (CL) with the hydroxyl groups of PHEMA segments used as initiation centers, and then Fe3O4@PHEMA-g-PCL magnetic nanoparticles were obtained. PCL segments of Fe3O4@PHEMA-g-PCL possessed lower degree of crystallinity than that of linear PCL. Meanwhile, Fe3O4@PHEMA-g-PCL nanoparticles showed superparamagnetism and comparatively strong magnetization. In vitro degradation investigation indicated that the degradation rate of PCL segments in Fe3O4@PHEMA-g-PCL increased with the decrease of the length of PCL chains. The release behavior of model drug chlorambucil from the nanoparticles indicated that the rate of drug release could be adjusted by altering the chain-length of PCL segments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer - Volume 51, Issue 12, 28 May 2010, Pages 2540-2547
نویسندگان
, , , , ,