کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
5205234 | 1502927 | 2017 | 11 صفحه PDF | سفارش دهید | دانلود رایگان |

Ultra-high molecular weight polyethylene (UHMWPE) fibre has great potential for strengthening structures against impact or blast loads. A quantitative characterization of the mechanical properties of UHMWPE fibres at varying strain rates is necessary to achieve reliable structural design. Quasi-static and high-speed tensile tests were performed to investigate the unidirectional tensile properties of UHMWPE fibre laminates over a wide range of strain rates from 0.0013 to 163.78Â sâ1. Quasi-static tensile tests of UHMWPE fibre laminates were conducted at thicknesses ranging from 1.76Â mm to 5.19Â mm. Weibull analysis was conducted to investigate the scatter of the test data. The failure mechanism and modes of the UHMWPE fibre laminates observed during the test are discussed. The test results indicate that the mechanical properties of the UHMWPE fibre laminate are not sensitive to thickness, whereas the strength and the modulus of elasticity increase with strain rate. It is concluded that the distinct failure modes at low and high strain rates partially contribute to the tensile strength of the UHMWPE fibre laminates. A series of empirical formulae for the dynamic increase factor (DIF) of the material strength and modulus of elasticity are also derived for better representation of the effect of strain rate on the mechanical properties of UHMWPE fibre laminates.
Journal: Polymer Testing - Volume 63, October 2017, Pages 54-64