کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5370883 1503914 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry
چکیده انگلیسی


- Compounds bind CA I with Kd = 2 pM, nearly tightest for any protein-ligand binding.
- Fluorination has a large effect on the observed but not the intrinsic affinities.
- Compound binding was enthalpy-driven to CAs I, II, VII and XIII.

Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biophysical Chemistry - Volume 205, October 2015, Pages 51-65
نویسندگان
, , , , , , , , , , ,