کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5372914 1504189 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A neutron diffraction study of the crystal of benzoic acid from 6 to 293 K and a macroscopic-scale quantum theory of the lattice of hydrogen-bonded dimers
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
A neutron diffraction study of the crystal of benzoic acid from 6 to 293 K and a macroscopic-scale quantum theory of the lattice of hydrogen-bonded dimers
چکیده انگلیسی


- Proton transfer and tautomerism are revisited from quantum viewpoint.
- Neutron-diffraction gives evidence for long-range correlations for protons.
- We introduce a decoherence-free macroscopic-scale crystal-state.
- All observations accord with the principle of complementarity.
- Computational-chemistry models are inappropriate.

Measurements via different techniques of the crystal of benzoic acid have led to conflicting conceptions of tautomerism: statistical disorder for diffraction; semiclassical jumps for relaxometry; quantum states for vibrational spectroscopy. We argue that these conflicts follow from the prejudice that nuclear positions and eigenstates are pre-existing to measurements, what is at variance with the principle of complementarity. We propose a self-contained quantum theory. First of all, new single-crystal neutron-diffraction data accord with long-range correlation for proton-site occupancies. Then we introduce a macroscopic-scale quantum-state emerging from phonon condensation, for which nuclear positions and eigenstates are indefinite. As to quantum-measurements, an incoming wave (neutron or photon) entangled with the condensate realizes a transitory state, either in the space of static nuclear-coordinates (diffraction), or in that of the symmetry coordinates (spectroscopy and relaxometry). We derive temperature-laws for proton-site occupancies and for the relaxation rate, which compare favorably with measurements.

192

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Physics - Volume 479, 10 November 2016, Pages 26-35
نویسندگان
, ,