کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5393075 1505553 2015 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DFT study of reductive functionalization in cis and trans cobalt-methyl-bipyridine complexes
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
DFT study of reductive functionalization in cis and trans cobalt-methyl-bipyridine complexes
چکیده انگلیسی


- Reductive functionalization occurs sans impediment from geometric or spin changes.
- Barriers for nucleophilic attack are lower than Co-Me homolysis.
- Co-ligands have significant impact in determining desirable catalysts.

Density functional theory (DFT) calculations were utilized to study the reductive functionalization (RF) of a bipyridine Co(III)-methyl complex, an integral step in metal-catalyzed hydrocarbon functionalization. In general, for the different X co-ligands modeled, ground and transition states were computed to be cis geometric isomers and singlet spin states, thus implying RF with these 3d metal complexes will proceed without impediment from large amplitude geometric changes or spin forbidden reactions. Barriers for nucleophilic attack (NA) by hydroxide were also compared with Co-Me bond homolysis, and the former revealed to be lower by a substantial free energy margin. Furthermore, the differences between the NA free energy barriers and the bond dissociation free energies (BDFE) varied for each ligand, indicating that the X co-ligands, although cis to the cobalt-methyl-nucleophile active site, can have significant impact in determining which catalysts will prove desirable. Overall, this research suggests that the bipyridine Co(III) complexes studied here are worthy of experimental studies.

DFT was utilized to model the reductive functionalization of a bipyridine Co(III)-methyl complex, an integral step in metal-catalyzed hydrocarbon functionalization.69

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational and Theoretical Chemistry - Volume 1073, 1 December 2015, Pages 102-105
نویسندگان
, , , , , ,