کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5401317 | 1392710 | 2012 | 5 صفحه PDF | دانلود رایگان |

Ce3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating (830 °C for 30 min) Ce3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction. The excitation peak wavelength of the resulting phosphor was 330 nm and the emission peak wavelengths were at 544 nm, attributed to the 5D4â7F5 transition of Tb3+, and at 430-470 mm, attributed to Ce3+. The intensity ratio of the two peaks could be freely controlled by varying the Tb/Ca atomic ratio of the Ce3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from blue to green. It was clarified that energy transfer exists from Ce3+ to Tb3+.
Ce3+, Tb3+ codoped calcium silicate hydrate phosphor was synthesized by liquid-phase reaction. This was heated at 830 °C to obtain a Ce3+, Tb3+ codoped amorphous calcium silicate phosphor. Under 330 nm excitation, this phosphor showed emission peaks at 430-470 nm and 542 nm. The luminescent color could be continuously changed blue to green with increasing Tb/Ca atomic ratio. It was clarified that electron transfer from Ce3+ to Tb3+ is occurring.442
Journal: Journal of Luminescence - Volume 132, Issue 11, November 2012, Pages 2992-2996