کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5404190 1505932 2006 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hole burning study of Tm3+:YAG hyperfine structure for quantum storage applications
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Hole burning study of Tm3+:YAG hyperfine structure for quantum storage applications
چکیده انگلیسی
Quantum storage, which aims at transferring photon quantum states into matter, can be obtained by using an ensemble of atoms whose levels form a three level Λ system. In these systems, two optical transitions couple two levels to a third one. This quantum storage scheme could be obtained with rare-earth ions in single crystals, since their optical and ground-state hyperfine transitions can exhibit long coherence lifetimes and their hyperfine structures could be used to build a three level Λ system. Tm3+ ions in Y3Al5O12 are especially interesting since the 3H6-3H4 transition can be driven by ultra-stable laser diodes. However, the selection rules on the nuclear spin projection can forbid the simultaneous coupling of two levels to a third one. In this paper, the hyperfine structure of Tm3+ is investigated by hole burning spectroscopy under a magnetic field and compared to theoretical calculations based on crystal field calculations. The experimental results are found to be in good agreement with theory and show that some magnetic field orientations are able to relax the selection rules on the nuclear spin projection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Luminescence - Volumes 119–120, July–October 2006, Pages 293-297
نویسندگان
, , , , , , , ,