کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
541438 871468 2010 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrostatic attraction and surface-tension-driven forces for accurate self-assembly of microparts
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سخت افزارها و معماری
پیش نمایش صفحه اول مقاله
Electrostatic attraction and surface-tension-driven forces for accurate self-assembly of microparts
چکیده انگلیسی

Self-assembly is not widely used in industrial micro-fabrication, although it can potentially involve assembly processes that are considerably less complex. A variety of procedures for self-alignment of parts have been introduced and investigated lately. These procedures mainly utilise capillary, gravitational or electrostatic forces in the micro-scale. This paper investigates two different concepts for accurate self-assembly of parts. One is well described in the literature by third parties and involves the alignment of parts by utilising the surface tensions of micro-scaled adhesive films, which are selectively coated on hydrophobic alignment structures. In the present publication the influence of the dimensions of such structured alignment sites on the process flow is discussed. The second concept is a novel approach to accomplish self-alignment of micro-structures with electrostatic attraction. Several complementary and electrically conductive micro-structured patterns serve as binding sites for the alignment of parts in this approach. In order to obtain knowledge of how these two approaches operate, they have been modelled and simulated. Additionally, in order to analyse the feasibility of these procedures and to verify simulation results experiments have been performed on micro-structured parts and substrates. In particular, the layout of the alignment structures and the size of the parts were identical for both described concepts in the experimental work; therefore, these two methods were compared. With the self-assembly procedure that utilises electrostatic attraction, high alignment accuracies and forces, affecting the part over large distances, were observed. Finally, parts with micro-structured binding sites, which were as small as 10 × 10 μm2, could accurately be self-aligned with electrostatic attraction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microelectronic Engineering - Volume 87, Issue 2, February 2010, Pages 159–162
نویسندگان
, , , , , ,