کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5435199 1509149 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals
ترجمه فارسی عنوان
توسعه و ارزیابی نانوبلورهای بستهبندی سطح پایدار شده لیگاندان هدف قرار دادن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
چکیده انگلیسی


- Surface modified PTX-NCs with HA and Tf are successfully prepared by adsorption method.
- Enhanced cellular uptake of modified PTX-NCs compared to unmodified PTX-NC
- Improved cell killing effect by surface modified PTX-NCs

To overcome the toxicity of excipient or blank nanoparticles for drug delivery nano-system, the surface modified paclitaxel nanocrystals (PTX-NC) have been developed. PTX-NCs were prepared by nano-precipitation method. The surface of PTX-NCs were modified by grafting with apo-transferrin (Tf) or hyaluronic acid (HA). The physical properties of PTX-NCs were evaluated by field emission scanning electron microscope (FE-SEM), zeta-sizer, zeta-potential, differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectrometry. In vitro drug release study was performed in phosphate buffered saline (PBS) with or without 0.5% (w/v) Tween 80 for 24 h. Cellular uptake was studied at time intervals of 0.5, 1, and 2 h in MCF-7 cells, and cell growth inhibition study was performed for 24 h using MCF-7 cells (cancer cells), and HaCaT cells (normal cells).Three different types of PTX-NCs with a mean size of 236.0 ± 100.6 nm (PTX-NC), 302.0 ± 152.0 nm (Tf-PTX-NC) and 339 ± 180.6 nm (HA-PTX-NC) were successfully prepared. The drug release profiles showed 29.1%/6.9% (PTX (pure)), 40.7%/23.9% (PTX-NC), 50.5%/25.1% (Tf-PTX-NC) and 46.8/24.8% (HA-PTX-NC) in PBS with/without 0.5% (w/v) Tween 80 for 24 h, respectively. As per the results, the drug release of PTX-NCs showed the faster release as compared to that of PTX (pure). Surface modified PTX-NCs exhibited higher values for cell permeability than unmodified PTX-NC in the cellular uptake study. Surface modified PTX-NCs inhibited the cell growth approximately to 60% in MCF-7 cells, however effect of surface modified PTX-NCs on normal cell line was lower than the PTX-NC and PTX (pure). In conclusion, biological macromolecules (Tf or HA) surface modified PTX-NC enhanced the cellular uptake and the cell growth inhibition.

173

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: C - Volume 72, 1 March 2017, Pages 228-237
نویسندگان
, , , , ,