کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5437940 1398179 2017 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina
چکیده انگلیسی
The mechanisms of fracture in polycrystalline alumina were investigated at the grain level using both the micromechanical tests and finite element (FE) model. First, the bending experiments were performed on the alumina microcantilever beams with a controlled displacement rate of 10 nm s-1 at the free end; it was observed that the intergranular fracture dominates the failure process. The full scale 3D Voronoi cell FE model of the microcantilever bending tests was then developed and experimentally validated to provide the insight into the cracking mechanisms in the intergranular fracture. It was found that the crystalline morphology and orientation of grains have a significant impact on the localised stress in polycrystalline alumina. The interaction of adjacent grains as well as their different orientations determines the localised tensile and shear stress state in grain boundaries. In the intergranular fracture process, the crack formation and propagation are predominantly governed by tensile opening (mode I) and shear sliding (mode II) along grain boundaries. Additionally, the parametric FE predictions reveal that the bulk failure load of the alumina microcantilever increases with the cohesive strength and total fracture energy of grain boundaries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 43, Issue 9, 15 June 2017, Pages 6967-6975
نویسندگان
, ,