کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
544634 | 871776 | 2011 | 5 صفحه PDF | دانلود رایگان |

In order to outperform current uniaxial compressively strained Silicon channel pMOSFET technology (with embedded SiGe source/drain), switching to strained Ge channel is mandatory. GeSn materials, having larger lattice parameter than Ge, are proposed in this article as embedded source/drain stressors for Ge channels. Our simulation results indicate that a minimum of 5% Sn is required in the GeSn source/drain to build a competitive strained Ge pMOSFETs with respect to strained Si channels. Therefore the compatibility of GeSn (with 2–8% Sn) materials with source/drain engineering processes (B implantation and activation and NiGeSn formation) has been studied. A low thermal budget has been determined for those processes on GeSn alloys: temperatures must be lower than 600 °C for B activation and lower than 450 °C for NiGeSn formation.
Journal: Microelectronic Engineering - Volume 88, Issue 4, April 2011, Pages 342–346