کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5470674 1519383 2017 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Saturated-unsaturated groundwater modeling using 3D Richards equation with a coordinate transform of nonorthogonal grids
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Saturated-unsaturated groundwater modeling using 3D Richards equation with a coordinate transform of nonorthogonal grids
چکیده انگلیسی
Saturated-unsaturated flow under a complex terrain is usually solved using the Richards equation. Finite difference or finite volume methods are commonly employed for discretization of Richards equation because of simplicity of coding. Complex subsurface boundary geometries lead to nonorthogonal grids in curvilinear grid systems, which leads to difficulty in discretization and mesh generation. This paper develops a vertical coordinate transform, enabling a computational domain regular in the vertical direction. As a result, the grid of curvilinear surfaces can be successfully transformed to a computational grid that allows solution of the Richards equation with efficient computation and simpler coding. The anisotropic Richards equation in the Cartesian coordinate system is transformed to the equation in the arbitrary coordinate system and further expressed as a form appropriate to the orthogonal coordinate system. The generalized third boundary condition is transformed to a form suited to the orthogonal coordinate system. The finite volume method is used to solve the Richards equation in the orthogonal coordinate system. Four cases are used to validate the present orthogonal coordinate system. The computational results from the orthogonal coordinate system are in good agreement with the results from Ansys Fluent solved in a Cartesian coordinate system for the subsurface flow case. For the coupled case of hill slopes, a good agreement between the computational results and the experimental data is obtained. The present results for V-titled catchment and slab case accord well with the results obtained from HydroGeoSphere and PAWS. The present algorithm can improve grid generation for solution of Richards equation in a hydrological model for a complex domain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 50, October 2017, Pages 39-52
نویسندگان
, ,